It is well-known that membrane deformation and water pores contribute to the spontaneous translocation of arginine-rich cell-penetrating peptides (CPPs). We confirm this through the observation of the spontaneous translocation of single R9 (nona-arginine) and Tat (48–60) peptides across a model membrane using the weighted ensemble (WE) method within all-atom molecular dynamics (MD) simulations. Furthermore, we demonstrate that membrane deformation and the presence of a water pore reduce the effective charge of the CPP and the bending rigidity of the model membrane during translocation. We find that R9 disturbs the model membrane more than Tat (48–60), leading to more efficient translocation of R9 across the model membrane.